Stable high-order cubature formulas for experimental data
نویسندگان
چکیده
In many applications, it is impractical—if not even impossible—to obtain data to fit a known cubature formula (CF). Instead, experimental often acquired at equidistant or scattered locations. this work, stable (in the sense of nonnegative only weights) high-order CFs are developed for purpose. These based on approach allow number points N be larger than basis functions K which integrated exactly by CF. This yields an (N?K)-dimensional affine linear subspace from weights selected that minimize certain norms corresponding stability process, two novel classes proposed and carefully investigated.
منابع مشابه
Error Estimates for Polyharmonic Cubature Formulas
In the present article we shall present basic features of a polyharmonic cubature formula of degree s and corresponding error estimates. Main results are Markov-type error estimates for differentiable functions and error estimates for functions f which possess an analytic extension to a sufficiently large ball in the complex space Cd . 2000 AMS subject classification: 65D30, 32A35
متن کاملAn encyclopaedia of cubature formulas
About 13 years ago we started collecting published cubature formulas for the approximation of multivariate integrals over some standard regions. In this paper we describe how we make this information available to a larger audience via the World Wide Web.
متن کاملExistence of Gaussian cubature formulas
We provide a necessary and sufficient condition for existence of Gaussian cubature formulas. It consists of checking whether some overdetermined linear system has a solution and so complements Mysovskikh’s theorem which requires computing common zeros of orthonormal polynomials. Moreover, the size of the linear system shows that existence of a cubature formula imposes severe restrictions on the...
متن کاملCubature Formulas in Higher Dimensions
We study cubature formulas for d-dimensional integrals with an arbitrary symmetric weight function of tensor product form. We present a construction that yields a high polynomial exactness: for fixed degree l = 5 or l = 7 and large dimension d the number of knots is only slightly larger than the lower bound of Möller and much smaller compared to the known constructions. We also show, for any od...
متن کاملSmolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree
We study cubature formulas for d-dimensional integrals with a high trigonometric degree. To obtain a trigonometric degreè in dimension d, we need about d ` =`! function values if d is large. Only a small number of arithmetical operations is needed to construct the cubature formulas using Smolyak's technique. We also compare diierent methods to obtain formulas with high trigonometric degree. Abs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2021
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110693